MATHEMATICAL PERSONALITIES

A talk with professor 1. M. Gelfand

A student and teacher who followed his own interests and instincts

Recorded by V. S. Retakh and A. B. Sosinsky

ISRAEL MOISEYEVICH GELFAND is
one of the greatest living
mathematicians. He's the author of
around 500 works—books and articles
not only on mathematics per se but
also on mathematical physics, cell
biology and neurobiology, and
applications in medicine, seismology,
and other areas. Gelfand is a member
of the Soviet Academy of Sciences,
the US National Academy of
Sciences, the American Academy of
Arts and Sciences, the London Royal
Society in England, the French
Academy of Science, the Royal
Swedish Academy, and many other
foreign academies. He has received
honorary doctorates from Oxford,
Paris, Harvard, and many other
universities. He has also received
such distinguished prizes as the Kyoto
Prize, the Wolf Prize, and the Wigner
Medal.

For some 45 years now, first-year
students and famous scholars have
gathered on‘Monday evenings at
Moscow University for Gelfand’s
renowned mathematics seminar.
Several generations of outstanding
mathematicians have been nurtured
by this seminar.

Gelfand founded the Mathematics
Correspondence School, which has
students throughout the Soviet Union,
and is the chairman of its governing
committee. The main goal of this
school is to reach out and help those
students who are practically deprived
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of mathematical literature and contact
with scholars. These are generally
students who live outside of Moscow,
Leningrad, and other big cities where
there is access to good books and
good mathematicians. Created 25
years ago, this correspondence school
was the first such school in the Soviet
Union and served as an example for
other correspondence schools that
followed.

Interviewers from our sister
magazine Kvant planned this
conversation with professor Gelfand in
the usual way—that is, by proposing
questions that would be of interest to

Professor I. M. Gelfand at home in Boston, October 1989.

1891

both Gelfand and Kvanf's student
readers. Gelfand glanced at the list of
questions and said they were very
interesting but he didn’t consider
himself competent enough to answer
them.

“You see,” he said, “l don't think |
have the right to impose my opinions
onyourreaders. Itwould be betterifl
just tell what | was doing
mathematically at their age—13 to 17
yearsold. I'mnotsure |l can recall
now all the problems | was working on
at that time, but the problems I'll talk
about | remember very well.”

And now—I. M. Gelfand's story.
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NE OF GRAHAM GREENE’S NOVELS is called

The Loser Takes All. My mathematical experience

was such a wonderful and happy one, for many years

it seemed to be the realization of Greene's title. Why
was | so fortunate? Briefly stated: first, I didn’t study at a
university (or any institution of higher learning, for that
matter); second, because of certain difficulties in my
family life I found myself in Moscow without parents, and
jobless, at sixteen and a half years of age.

I'll try to illustrate the meaning of the expression “the
loser takes all” with the help of another English writer,
Somerset Maugham. The hero of the story, a church
sexton, suffers a misfortune: during certification of church
personnel it comes to light that he’s illiterate, and so he’s
fired. He starts selling cigarettes, then buys a tobacco
stand, then several others, and ends up making a brilliant
career in commerce. He becomes the richest manin the
city. He becomes the city’s mayor.
Someone comes to interview him—
just as you're doing now—and he ex-
plains to the journalist that he’s illiter-
ate. The stupefied journalist exclaims,
“What heights you could have attained
if you had been literate!” Without a
pause the mayor replies, “I'd have been
a sexton.”

So in February 1930, at sixteen and a
half, I came to Moscow to live with my
distant relatives, and I was often unem-
ployed. I tried many temporary jobs, but
mostly I went to the Lenin Library and
“pulled together” all the knowledge I
didn’t get in school and in the technical
training [ didn’t finish. At thelibraryl
met university students and started going
to seminars. At 18 I was already teach-
ing, and at 19 I found myself in graduate
school. The rest of my mathematical
career proceeded quite normally, taking
the usual track for mathematicians.

But it’s not this part of my life that I
want to talk about. I want to tell your
readers about the earlier period. I'd like
to do this for two reasons. First, it’'s my
deeply held conviction that mathemati-
cal ability in most future professional
mathematicians appears precisely at that
time—at 13 to 16 years of age. (Of
course, there are exceptions—some who
develop earlier, some later, at 20 to 30
and even 40—among very strong mathe-
maticians.] Second, this early period
formed my style of doing mathematics.
The subject of my studies varied, of
course, but the artistic form of mathe-
matics that took root at this time be-
came the basis of my taste in choosing
problems that continue to attract me

Receiving an honorary doctorate at Oxford University in 1973.

right up to the present time. Without an understanding of
this motivation, I think it’s impossible to make head or tail
of the seeming illogic of my ways of working and the
choice of themes in my work. In the light of this
motivating force, however, they actually come together
sequentially and logically.

The first thing I remember happened when I was
around 12. Tunderstood then that there are problems in
geometry that can’t be solved algebraically. Idrew upa
table of ratios of the length of the chord to the length of the
arc in increments of 5 degrees. Only much later did I learn
that there are such things as trigonometric (not algebraic!)
functions and that, in essence, I was drawing up trigono-
metric tables.

At about this time I was working through a book of
problems in elementary algebra. Ihad no accompanying
textbook, I didn’t know the theory, but sometimes [ had to
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solve some pretty tough problems, using formulas that I
didn’t know at the time. When I couldn’t figure out how:
to solve a certain problem, I'd look at the answer, and I
learned how to reconstruct methods of solving problems
from the way they're set up and from the answers given. In
particular, I understood then, and remembered for the rest
of my life, that you can master a subject by solving
problems and that there’s nothing wrong with looking at
the answer since we always have ahypothesis about the
answer while we’re working on any problem. Doing
research in mathematics is similar to solving problems in
which something about the answer is known. This is the
difference between working in mathematics and training
for university entrance exams (which is necessary as well,
of course).

At the age of 12 or 13 I tumed my attention to geometry
problems in which there was often a right triangle with
sides 3, 4, 5 and even with sides 5, 12, 13. I wanted to find
all right triangles with integer sides, and I derived a general
formula for their sides. That is, I found all Pythagorean
triples.! (Of course, I didn’t know the term at the time.)
Unfortunately, I don’t remember how I did it.

I worked at mathematics when I was sick and when1
was on vacation. Even now I can’t help noticing how
much strong students manage to do when they stay home
because of illness. And so I would keep my own sons home
a few extra days after they got better.

In the geometry textbook we used, some theorems were
given as problems. 1got my hands on anotebook (notan
easy thing in those days) and wrote out the statement of a
theorem on each page. Over the course of the summer
covered almost all the pages with proofs. That’s how I
learned to write out my mathematical work.

I'll skip over a stretch here. I'll mention only the book
by Davydov on algebra in which you can find clever ways
of solving problems about maxima and minima by means
of elementary techniques (that is, without using differen-
tial calculus). For example: given a + b, find the maximum
of ab; for a given perimeter, find the rectangle with the
maximum area; find the maximum of the product of
nonnegative numbers a,4a,...a,, given their sum a, + a, + ...
+a,; little squares are cut out of a square with a given side
anda box is made out of the remainder—what size must
the little squares be for the volume of the box to be
maximal?

Combinatorics and Newton’s binomial formula made
a great impression on me, and I thought about them for a
long time.

I lived in a small town with only one school. My
mathematics teacher was a kind but stern-looking man by
the name of Titarenko. He had a huge Cossack mous-
tache. T haven’t met a better teacher, although I knew
more than he did and he knew it. He liked me alot and

ISee “Genealogical

Threes” in the Nov./Dec. 1990 issue of
Quantum.—Ed. E
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Lecturing at the Massachusettes Institute of Technology
(MIT) in 1989.

encouraged me in every way. Offering encouragement is
a teacher’s most important job, isn't it?

There was a definite lack of mathematical books. Isaw
ads for books on higher mathematics and figured higher
mathematics must be pretty interesting. My parents
couldn’t order these books—they didn’t have the money.
But once again I was lucky. At the age of 15 I was taken to
Odessa to have my appendix taken out. I told my parents
I wouldn’t go to the hospital until they bought me a book
on higher mathematics. My parents agreed and bought me
the textbook on higher mathematics written by Belyayev
in Ukrainian for use in technical institutes. But they only
had enough money for the first part, which was about
differential calculus and analytical geometry in the plane.

I was lucky that I didn’t start with a full-fledged
university course. This was a very elementary book. You
can judge the level of Belyayev’s book by its introduc-
tion—in particular, it says there are three kinds of func-
tions: analytical, as defined by formulas; empirical, as
defined by tables; and correlational. Ididn’t find out about
correlational functions until many years later, from a
student who was studying probability theory.

efexsasfesie)y ‘| Aq ojoud

On the third day after the operation I picked up the book

and read it, alternating it with novels by Emile Zola, for
nine days. (In those days you’d stay in the hospital for
twelve days after an appendectomy.) That was enough
time for me to finish Belyayev’s book.

I took away two remarkable ideas from this book. First,
any geometric problem in the plane and in space can be
written as formulas. ([ had suspected this earlier.) Ialso
learned about the existence of some remarkable figures—
the ellipse, for example.

The second idea turned my world view upside down.
This idea is the fact that there’s a formula for calculating
the sine: sin x = x—x°/3! + x°/5! — ... . Before this I thought
there are two types of mathematics, algebraic and geomet-
ric, and that geometric mathematics is basically “tran-
scendental” relative to algebraic mathematics—that is, in
geometry there are some notions that can’t be expressed by



formulas. Consider, for example, the formula for circum-
ference—it contains the “geometric” number x; or, say,
the sine—it’s defined in a completely geometric way.

When I discovered that the sine can be expressed
algebraically as a series, a barrier came tumbling down,
and mathematics became one. To this day I see the various
branches of mathematics, together with mathematical
physics, as a unified whole.

Of course, I became convinced that problems of the
extreme are solved automatically (that is, by means of an
exact algorithm). Although they lose their charm, you
have in your hands a powerful tool (calculus| for solving
them.

Studying differential calculus I learned that there is also
integral calculus, which has to do with areas and volumes.
But what it consisted of,  had no idea—I didn’t have the
second volume of Belyayev’s textbook!

Now’s a good time to mention another problem I recall.
The next autumn we studied the volumes of solids of
revolution at school. A classmate of mine, D. P. Milman,
who later became a famous mathematician, brought the
following problem to my attention: find the volume of a
body formed by the rotation of a circle aboutits tangent.
To solve it I divided the circle into strips. Then I calculated
the differences of the volumes of the corresponding cylin-
ders obtained by rotation. Finally, I found the sum of these
differences. This brought me face to face with the need to
find the sum

COS @ + COS 20+ Cc0O8 3@ + ... + COS 11¢. (1)

The rest, as usual, was a mixture of inventiveness and
stupidity. I passed over an elementary solution based on
standard trigonometry, using instead the formula

e = cos @ +1sin .

(This formula is called Euler’s formula, but I didn’t know
that.) I got this formula from the power series for sin x,
cos x, and ¢*, which had made a deep impression on me. It
remained for me to find the sum of the geometric progression
e +e¥+ . and, from that, toderive thesum (1), which I
did.

This problem led to my habit of thinking about a
problem even after I'd solved it. And I came up with some-
thing else: I moved the circle away from the line and
understood that rotation produces a body that looks like
the rubber cushion my friend’s hemorrhoidal grandfather
used to sit on. Knowing the radius r of a circle and the
distance d from its center to the line, I used the method
described above to determine the volume of the solid of
revolution, 2nr’d. I was stunned by the simplicity of this
formula. Irewrote it in the form nr? - 2nd and understood
that if we cut the rubber cushion and pull it into a cylinder
whose side equals the length of the trajectory formed by
the center of the circle, then the volume of the cylinder
would be the same. A similarfactis true forthe areaof a
surface, and I understood that it was not by chance, What

will happen if we rotate some other figure instead of a
circle—for example, a triangle?

In this case the volume of the solid of revolution
coincides with the volume of a prism whose base is a
triangle and whose height equals the length of the trajec-
tory formed by the common intersection of the medians of
the triangle. From a physics book I knew that this point is
the triangle’s center of mass. Seeing what happens when
a section is rotated, I understood that the center of a circle
isits center of mass aswell.

I found a general definition of the center of mass in some
textbook on the strength of materials—I have no idea
wherelgotaholdof it. Notonly did [immediately start
rotating various figures, I'd move them along various
curves and calculate the volumes of the bodies obtained
and their surface areas. The rigor of the thinking was
important here. I was very proud that I could find the
center of mass of a half circumference (half circle) and of a
half disk (half of the interior of a circle] given the volume
ofaball and the area of its surface.

And I was lucky yet again. An extraordinarily well-
educated man (in my opinion at the time) came to our
town. He had graduated from the Odessa Pedagogical
Institute in physics and math. Among the books he
brought with him were Kagan's Theory of Determinants
and Hvolson’s Course in Physics. Kagan's book was useful
and detailed. It even contained a chapter on determinants
of infinite order.

I should also mention the biology textbook by Filip-
penko, the well-known biologist from the school of the
famous geneticist N. K. Koltsov. This was a fine book, and
it naturally influenced my work in biology some 15 or 20
years later.

But to get back to mathematics. Iwas still interested in
problems of areas and volumes. Ibegan with a calculation
of the area under the segment between two points of a
parabola. This problem reduces to a ¢alculation of the sum
12422+ ...+ n* which 1 did easily.

Then I'wanted to find the area under the curve y = x?,
wherep=2,3,4,...;thatis, tofind thesum S = 17+ 27+ ...
+ n? for every positive integer p.

By analogy with the formula

5 _ntn+ 1D Q2n+1)
e Ty

1 decided that S is a polynomial in n of degree p + 1. I didn’t
notice that to find the area under the curve it’s sufficient to
know only the first coefficient of the polynomial S , sol
started searching for the entire polynomial. This turned
out to be quite interesting. First of all, I generalized the
problem: instead of x* I considered f{x] and started looking
forthesum

o
1% e 4

So=fl1)+£2)+... + fin).

Let F(x) be a function such that F/(x) = fix). From Taylor’s
formula we get
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F()-F() = f(1)+f2m +E0)

3 s
F(3)—F(2) ft2)+1-5-2—+f"3(|2)

F(n+l)—F<nl;f(nl+%+%+...,
I added these equalities and got
S' S
Fln+1)—F(1)=§ +§+§+
where §,is the sum that interested me and

=f(1)+f(2)+...+f(n),
S,=f"(1)+f(2)+...+f'(n), ...

Then I wrote the following system:

s S, S3
F(n+1)—F(I)_S+ ettt
2! 3t

3, 3,
JI‘(M+I)—f(1}r—S +—+§+..

/ 5
f(n+l)—f(1):.5'2+§+....

This is an infinite system with an infinite number of
unknown variables S, S, S,, .... AsImentioned earlier,
Kagan'’s book touched on determinants of infinite order, so
I'wasable touse Cramer’s rule tofind S
Fn+1)-F1) 1/20 1/3! 1/4!..
flm+1)-A1) 1 120 1/3!..
f'ln+1)-f'(1) 0O 1 1/2! ...

I expanded the determinant in the numerator of this
“fraction” in the elements of the first column and the
corresponding minors and got

S,=ByfF(n+1)=F(1))+B,(fln+1)-f(1))
+B,(f(n+1)=F(1) +..., (2)

where B = 1, B, B,, ... are numerical determinants of
infinite order. The expression I got is called the Euler-Maclaurin
formula, but of course I didn’t know that. To calculate this
expression I needed to know the coefficients B, B, B,, ... .
To do this, I used arguments that would now be called
“functorials.” Taking advantage of the fact that the
coefficients B, B, ... don’t depend on f, I picked a function
f such that the left part of the system formed a geometric
progression (which I knew how to sum). The function f{x)
= e** suits this purpose. Insertingit into formula (2) (I'll
leave the intermediate steps for you to work out!), I got
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(e“~1)

That is, I got the power series for the numbers I was af-
ter. (These numbers B, B,, B,, ... are called Bernoulli num-
bers, and the polynormal S, for fix) = x7 is called Bernoulli’s
poi‘ynomml )

I remember two other problems from this period. The
first arose out of the problem in our book of algebra
problems: express x” + x,? and x,* + x,* via the coefficients
of a quadratic equation with the roots x, and x,. A natural
generalization of this problem leads to another: express
the sum x? + ... + x ? and the sum x 2 + ... + x 3 via the
coefficients of the equation x" + a x"' + ...+ a, =0, where
x,, ..., X, are roots of this equation. At this point Bezout’s
theorem helped me, which I knew from Davydov’s book.
I went further and posed a more general problem for
myself: express the sum of kth degrees of the roots of an
algebraic equation of nth degree via the coefficients of this
equation. I managed to solve this problem (the solution is
known as Newton'’s formula).

The second problem I solved at that time arose when I
discovered that the number cos ix is real because

cosix = | +§+§!+
I pondered this unexpected fact and came up with the
following general theorem: every even real-valued func-
tion takes real values on the imaginary axis.

To prove this [ had to refine the notion of a “function.”
I thought about what to call a function and arrived at this
definition: a function is the sum of a convergent power
series. After this, the proof of the theorem is almost self-
evident.

This problem was probably the last one I thought about
before I came to Moscow. Isolved it in the summer of
1929. The next six months were very difficult for my
family and me. Mathematics was far from my mind.

The next period of my studies in Moscow was no longer
“pure experimentation.” In Moscow I was exposed to
many completely different influences, and my develop-
ment no longer drifted on its own course. At this time, as
I mentioned earlier, I studied independently in the Lenin
Library and lived on occasional eamings from odd jobs. For
a while I actually worked behind a check-out desk at the
library. I met mathematics students from the university.
One of them told me that expressions of the form f{n + 1)
—fin), which greatly interested me, were part of a whole
science called the theory of finite differences. He told me
I had to read Norlund’s book Differenzenkalkiil on this
topic. It was in German, but I mastered it with the help of
a dictionary.

I started going to university seminars, and there I found
myself under intense psychological stress. I discovered
that my style of doing mathematics wasn’t good for
anything. New breezes were blowing in mathematics—
new demands for rigorous proofs, great interest in the
theory of functions of a real variable. (Today this level of
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rigor and this particular theory are
considered old-fashioned and obso-
lete, but at the time . . .

Then I realized it's very important
that a function doesn’t have to be
continuous, that a continuous func-
tion doesn’t have to be differentiable,
that a differentiable function doesn’t
have to be twice differentiable, and so
on; that even if a function has deriva-
tives of all orders, the Taylor series for
this function isn’t necessarily conver-
gent, and that even if it is, its sum
doesn’t necessarily coincide with the
value of the function! If this coinci-
dence takes place, the function is
called analytic, and this class of func-
tions (so the devotees of the real-
variable function theory maintained)
is so narrow that it lies outside the
bounds of mainstream mathematics.
And these were the only functions I'd
been looking at!

Under the pressure of this point of

H

view, I read the “modern, rigorous
textbook on analysis by Vallee Poussin.
[t’s similar to the texts currently used
at Moscow University by students of
mathematics and mechanics, but better.
So I sympathize with those first-year
students who are allowed to experi-
ence the beauties of mathematical
analysis only after a year’s probation,
a sort of trial by the fire of its “rigorous
foundation.”

Butevenherelwaslucky. Ibegan
reading L. I. Privalov’s remarkable book
on the theory of functions of a com-
plex variable. While reading this book
I understood why, for the function f{x)
=1/(1 +x?), the Taylor seriesis diver-
gentat x = 1 even though its graph is
continuous. (As amatter of fact, the
corresponding complex function has
a singularity or x =1). After the first
100 pages I felt a fresh wind. I discov-
ered that if acomplex function has a
first derivative, it has derivatives of all
orders, and then the Taylor series
converges at the value of this function
in some domain. Everything fell into
place, and harmony was restored.

I raced through Hurwitz and Cour-
ant’s book on the theory of functions
of a complex variable. I was mostly

CONTINUED ON PAGE 26

Thereis no Nebel Prize in mathematms One storylu$ it
Alfred Nobel loved left him for the famous Swedish mathes
Leffler. So when Nobel decided what prizes should be awarded
he established one in physics, one in economics, one in literature, as well as
areas, but somehow either forgot or wasn’t especially enthusiastic abou
lmhmgaNnbeanzemmathemam -
Whatever the real reason, this injustice was mtedhykk&ﬂ&Wolf an-
other wealthy industrialist. Being of Jewish origin, he | fro | .
ﬁmmmmmwmdmhhmmmg'" mﬁfl :
in the steel industry. Even though he was a capitalist, he wasa friend
Castro, who even sent him as the Cuban ambassador to Israel. Whe:
oﬁdipimmucrdanmsmthlmadaftaﬁlernme 73, he decided
tostay inIsracl. Wolf, who was already in his eighties at the time, founded the
Wolf Foundation. The foundation, whichmba&aﬂin israél" , € ytz:tawsrds

oftheSowUn&mde.LSwgdchmnmy ln___ 8 the
Mmaﬁmmmﬁmmm&&mmm
Jerusalem to :emive the prize. lt wasenlytﬁn?eatﬂ i
attend the yea:ly pmenmzm n '
Thel(m?mnwardedhy&emeﬁ

amuslpmasmqaemﬁc e ph |
baslcsc:ences andcreameartandmraiscienm Bacia. '
selected&omeadwithetl'um*.f )
field. For instance, the 1986 Kyoto Prize
in 1987—in Earth sciences and astrophysics, and so on. Ym__\
Prize for a mathematician is much more difficult since it's no
year. LMGel’t'mdxewwdﬂmeanml%E?whm the fie
sciences was mathematics. _
Anothammdthatahmﬂdhcmmumedhmﬁthaﬁdﬂg Aeda
International Congress in Toronto, a resolution was adopted thal ;
should be awarded at each international mathematical congress, held every
years. Professor J. D. Fields, aCmadunma&mumWWﬂlw&thc
lmmwgress,lamdmmedﬁmdsﬁtabhslungﬁse ‘which were named in
his honor. Fleldsmsheddmtﬁmmuuhbe@mmthemm and recognize
both existing work and the promise of future development, so the medals are
restricted to mathematicians not over the age of forty. In lmihznumbet of
medals that could be awarded at each international congress was ir to four
mhghtofthegrmtexpmmmofmﬂamamdmnchinthemﬂ

After the Kyom Prize award ceremony, Professor Gelfand talks with Japanese
mathematicians (November 1989).
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impressed by the chapters on elliptic
functions written by Gourvits. And
once again fashion made a fool of
me—this branch of mathematics was
considered obsolete. The theory of
elliptic functions was looked down
on as “barely extended trigonome-
try.” Many years would pass before
this area once again became a focal
point of mathematicians’ attention.

I gained a lot from the university
seminars. Meeting with mathemati-
cians of every stripe, I was able to
compare my romantic, antiquated (that
is, unfashionable) views of mathe-
matics with what was actually hap-
pening then. I studied with many
remarkable mathematicians and con-
tinue to try to learn this way.

A little later I read—studied in
great depth, really—a remarkable book
by Courant and Hilbert called Meth-
ods of Mathematical Physics. I un-
derstood then the need to read basic
works. Here it’s important not to
regret the time spent thinking about
the very foundations of a theory. The
work of Herman Weyl (1925) on the
representations of classical groups
belongs to that category. But, unfor-
tunately, we didn’t have access to
even older imdamental works by Cayley,
Schur, and other authors of the “pre-
Hilbert period.”

Ilearned a lot from L. G. Shnirel-
man, M. A. Lavrentiev, L. A. Luster-
nick, I. G. Petrovsky, A. L. Plesner,
and even more from Andrey
Nikolayevich Kolmogorov.? In par-
ticular, I learned from him that a true
mathematician nowadays must be a
philosopher of nature.

But my story has turned into the
standard scientific biography. This
genre is usually very misleading. A
true scientific biography issimplya
collection of the scientist’s works.
One’s own impressions about one’s
works are no more significant than
the impressions of any otherreader.
Andsoit'stimelended my tale. [@)

2For more on A. N. Kolmogorov, see
the Innovators department in the Jan.
1990 issue of Quantum —Ed.
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point midway between the cylinders.
If the distance between the cylinders
is 2d, the stick has a weight w and
length 1, and the coefficient of friction
between each cylinder and the stick is
i, describe how the stick moves.
Please send your solutions to Quan-
tum, 1742 Connecticut Avenue NW,
Washington, DC 20009. The best
solutions will be acknowledged in
Quantum and their creators will re-
ceive free subscriptions for one year.

Glick, click, click

We were disappointed that we re-
ceived no correct solutions to this
contest problem. We are confident
that our readers could have solved
part A. Don't get discouraged. If you
can answer part A but not part Bor C,
send us a note anyway. Your solu-
tions will help us judge what you
might like to see.

In the Contest Problem involving
Newton’s toy you were asked to find
the mass of a middle ball so that the
velocity of the small ball will be great-
est in a three-ball collision. Applying
the laws of conservation of energy
and momentum to the fiIst col]ision,
we have my, = myv,’ + myv,
(12)myv2= (I/Z}m v, g [i/2]m V’Z.

Solwng forv/'in the first equatlon
and substituting in the second equa-
tion, we arrive at 0 =-2mv\v,’ +
m,v,” + mv,"”. Solving for v,’, we find
thatv,’=0andv,’=2m v, /(m, + m,).
We ignore the solution v,’ = 0 since
this corresponds to the case of no
collision. Since the second collision
is similar to the first, we can write
down the relevant equation immediately:
v,” =2m,v,'[/(m, + m,). Combining
the last two equations, we get

4m|m7v

" 21

V3 = .

(o )orm) 1
To find when the value of m, for
which v,” will be a maximum, we
can take the derivative of v,” with
respect tom, and setitequal to zero.
The solution is that the mass m,
should be the geometric mean of the
other masses. Specifically,

1981

= 2
m,=\/mm,. (2)

For those of you who aren’t knowl-
edgeable about calculus, we suggest
that you take arbitrary values for m
and m, (thatis, m =1 and m, = 100)
and plot a graph of v, versus m, for
different values of m,. You'll find
that the graph reaches a peak where
m, = 10, as predicted by equation (2).

Part B of the problem is an exten-
sion of this solution to a collision of
fiveballs. In this case, the masses of
the balls follow the relation m /m, =
m,/m,=m,/m,= m,/m,. PartCof the
problem asks about the middle mass
given a coefficient of restitution e.
You may be surprised to find out that
the ratio of masses is the same, inde-
pendent of e, and is therefore the
samesolutionasinpart A.

Burt Lowry, our colleague from
Whitman High School in Bethesda,
Maryland, was quick to point out
that other collision possibilities exist
mathematically in the Newton toy
that obey energy and momentum
conservation. These never occur because
the masses are independent. One ball
always hits a second ball. The incom-
ing ball never “sees” a ball of twice
the mass, but rather sees a single-
mass ball. This probably explains the
importance of always leaving a small
space between the balls when you
build one of these toys. ®
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